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Abstract

The extension of the baryon transport code (BRYNTRN) for use
in space radiation dose analyses for very large shield thicknesses tis
made possible by improving the numerical algorithms. The efforts were
concentrated in obtaining more accurate, yet efficient, interpolation and
integration methods at each local computational step, and in optimizing
the grid distributions. A brief discussion of the nucleon transport
theory and propagating formula is also given in conjunction with the
analysis of error propagation which reveals the need for minimizing the
local truncation errors. Sample calculations were made to verify the
new algorithms. An accuracy of approzimately 5 percent for a shield
thickness of 150 g/cm2 was found when a minimal 30-point energy grid
was used. This accuracy was far superior to the results obtained by using
the old algorithms where the solutions could be an order of magnitude
different when a reasonably large number of grid points were used. The
propagating step size was chosen such that the perturbation theory error

matched the improved numerical accuracy.

Introduction

The recently developed, coupled neutron-proton
baryon transport computer code (BRYNTRN)
(ref. 1) using a deterministic approach for solving
space radiation transport problems has been shown
to be a convenient tool for the analysis of a shield-
ing requirement against space protons for the future
NASA manned space missions (refs. 2 and 3). The
code has been used mostly to predict doses received
by the astronauts inside a spacecraft of certain nom-
inal thicknesses or in a storm shelter of a practi-
cally achievable quantity of mass. The accuracy of
such analyses conducted by employing BRYNTRN
can be assessed by the recent study (ref. 4) in which
BRYNTRN and Monte Carlo calculations with shield
thicknesses up to 30 g/ cm? were compared and found
to be within 10 percent.

The propagated error for a space-marching code
such as BRYNTRN can become overwhelmingly
large when the required number of computational
steps increases. With the step size restricted to
ensure that the perturbation series (ref. 5) will
converge, BRYNTRN with existing numerical algo-
rithms has been found to be quite satisfactory in
marching through a thickness of 30 g/cm? or so.
However, there are some applications that require
the number of marching steps to increase enormously.

Nucleon Transport Method

For example, predicting the dose received by an as-
tronaut in a very slender body like the Space Shut-
tle requires radiation transport calculations through
rays up to 150 g/cm2. Also, predicting radiation
hazards for the passengers on a commercial sub-
sonic high-altitude aircraft involves a radiation trans-
port through the Earth’s atmosphere of at least
200-300 g/cm? (refs. 6 and 7). In such cases, the
number of marching steps becomes so large that the
propagated (accumulated) error can distort the re-
sults or even destabilize the computation.

The present study places efforts on minimizing
the local numerical errors of the existing
BRYNTRN so as to reduce the propagated error and
allow the code to be extended for use in space radi-
ation application where the shield thickness is very
large. The numerical algorithms will be improved
to minimize the error but not to compromise the ef-
ficiency of the code. The computational step size
will be examined and its maximum will be estab-
lished so that the error from the perturbation tech-
nique will watch the improved accuracy of the new
code. Sample calculations will be made to validate
the new algorithms. A brief discussion is also given
of the BRYNTRN nucleon transport method, the
space-marching technique, and the propagation of
€rTors.

Since the protons produced by the solar particle events are energetic, the straight-ahead approximation is
applied to the Boltzmann transport equations. The proposed perturbation theory (ref. 5) and the subsequently
developed numerical technique (ref. 8) for solving the one-dimensional charged-particle transport equation



have been extended (ref. 9) to the coupled neutron-proton transport equations in BRYNTRN. In the following
discussion, a one-dimensional charged-particle transport problem will be considered first for the purpose of
presenting the numerical procedures and error analyses, and the final forms of propagating (space-marching)
algorithms for the coupled neutron-proton transport equations will be given.

Charged-Particle Transport
The Boltzmann equation for proton transport in the straight-ahead approximation is given as

[% - 555(8) +U] oo, )= [ BB oo, ) as )

where S(E) is the proton stopping power as a function of energy E, o is the macroscopic interaction cross
section which we presently take as energy independent, ¢(z, E) is the nucleon fluence spectrum at distance z,
and f(E, E') is the production secondary-particle spectrum by the primary particle of energy E’. Using the
definitions

E
r= /0 dE'/S(E") (2)
¥(z,7) = S(E) ¢(, E) (3)
and -
f(r,r') = S(E) f(E,E') (4)
allows equation (1) to be written as
(5~ g+ o) wan = [ T pia s ar ®)

The advantage of equation (5) over equation (1) is that derivatives of ¢(x, E) with respect to E display large
variations at low energy and are difficult to approximate numerically, whereas 1)(x, r) is well-behaved at all r
values and approaches a constant at small values of 7. The differential operator of cquation (5) may be inverted
to yield

Yz, r) =e 7% (0, r+x) + foz dz e ¢ /r: dr’ fir+z, ") Y(z—2, ) (6)

where the boundary condition is

¥(0,7) = S(E) ¢(0, E) (7)

' A propagating algorithm for equation (6) is found by noting that

h oo
W(@+h, )y =e " y(x, r+h) +/0 dz e_‘”/ dr’ fr+z,7"+2) Y(x+h—2,7"+2) (8)

which can be simplified by using
W(x+h—z,1) ~ e N2 y(z r+h = 2) + O(R) (9)

which yields
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with the order of h?, where h is the step size. Equation (10) is accurate for distances such that ch <« 1 and
may be used to relate the spectrum at some point z to the spectrum at x + h. Therefore, one may begin at
the boundary (z = 0) and propagate the solution to any arbitrary interior point using equation (10).

The secondary-source spectra f(r,7’) in the integral portion of equation (8) are of the form
fr,r)y = ae ™ + ce(r="") (11)

where the coefficients o and ~ are slowly varying functions of ', ¢ is related to the quasielastic cross section,
and a is determined by the normalization

/T f(r,7dr=¢
0

The first term corresponds to knockout nucleons and evaporation particles so that ar’ > 1. The second term
corresponds to the quasielastic scattered primary such that yr! <« 1. Typically, « ~ 1 — 10 cm? /g and
v~ 1073 - 1072 cm?/g. Equation (11) will be used later when considering the simplification of the numerical
procedure.

Error propagation. In considering how errors are propagated in the use of equation (10), the error is
introduced locally by calculating ¥(x,7+h) over the range (energy) grid. Limiting our current analysis to the
first term of equation (10), at each range grid r; it is defined that

Yla+h,r) = e 7" Yz, ri+h) (12)
We denote the truncation error ¢; introduced in the interpolation procedure to the interpolated value ¥, as
P(z,mi+h) = Yine (2, 7i+h) + €(h) (13)

After the kth step from the boundary, the numerical solution is

k—1
Wkh, i) = e " g [(k—1)h,ri+R] + Y e 7 EDe () (14)
£=0

Suppose that 0 < €;(h) < e(h) for all indexes ¢; then the propagated (prp) error is bound by

k-1 -
eorp(k) = 3 e 00O ¢y(n) < e(h) Y e OR (15)
=0 =0
We note that -
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since ho < 1. Clearly the propagated error on the kth step is bound by

e(h) —okh
prp(h) < S (1 —e ) (17)
where ¢(h) is the maximum error per step. With increasing values of k, the propagated error grows each step
to a maximum value of €(h)/ho. For a typical situation, if we take ho = 0.01 and the step size h=1g/cm?
the propagated error increased by extending the transport calculation from 30 to 150 g/ cm? is three times as
large (i.e., eprp < 78 €(h) instead of eprp < 26 €(h)). Evidently, we need to control the truncation error at each
step.



Numerical procedure. We now consider numerical methods for the integral portion of equation (8). We
will make use of the form of the interaction given by equation (11) for which an analytic solution can be easily
obtained. As shown in connection with equation (10), equation (8) may be rewritten as

h 00
W(z+h,r) = e " Pz, 7+h) +e“’h/ dz/ dt ae~®2) y(z, t+h)
0 r

4ok / " i / gt ce?T Q) y(z, t4+h) + O(h2) (18)
0 r '

where Q represents the average energy shift of the projectile producing the secondary particles across the
interval £ to £ + h and t is a dummy variable. In principle, a,a, ¢, and 7 are dependent on projectile energy
as well and would be evaluated using the same @ value (ref. 1). With the analytic forms in equation (18) we
may perform the integrals as

Plz+h,r) = e " Pz, r+h) + e " /oo dt % [e_o‘r - e_“(r+h)] Y(z,t+h)
+eoh /  dt hee?™D (z, t4h) + O(h2) (19)

The integral terms of equation (19) can be written in terms of the cumulative secondary spectra denoted as

Fa(r,t) = /0 " e (20)
and
Fu(r,t) = /0 " e g (21)
In particular,
g 7o — e o] = Fy(r + B, t+Q) — Fu(r,t+Q) (22)
che?"=t=Q) = [F.(r+h,t+Q) — Fo(r, t+ Q)] [1 - %v(h - 2Q) + O(h?) (23)

which may now be substituted into equation (19) to obtain

Y(z+h,t) =e " ¢(z,r+h) + e " /oo dt [Fo(r+h,t+Q) — Fo(r, t+ Q)] ¥(z,t+h)
+e / = [Fe(r+h,t+Q) — Fo(r,t+Q)] ¥(z,t+h) + O(h — 2Q) + O(h?) (24)

The second-order accuracy is maintained only if @ is chosen at the midpoint of the interval (i.e., @ = h/2).
Additional details of this analysis can be found in reference 1. The propagation equation is implemented as

¢@+hw)=eﬂmtﬂaf+h%+/ﬂath(MTJ+%) (z, t+h) (25)
where

_ h _
F(h,r,t):/o fr+2z,t) dz

= F(r+h,t) - F(r,1) (26)



and is related to the cumulative energy spectrum by
e(r)
F(r,t) = / f(E,E") dE (27)
0

where €(r) is the energy associated with the residual range r and E = €(t).

Coupled Baryon Transport

The coupled baryon transport equations are of the form

0 0

o0
/ / !
% ViggS Bt Uj(E)] ¢i(z, E) = ; /0 fix(E,E') ¢(z,E') dE (28)
where v; is the range scaling parameter, S(E) is the proton stopping power, o;(E) is the total cross section,
¢;(z, E) is the differential flux spectrum of type j baryons, and f;x(E, E') is a differential energy cross section
for the redistribution of particle type and energy. Utilizing the definitions

E
r— /O dE'/S(E') (29)
and
}jk(r)rl) = S(E) fjk(E7E’) (31)
allows equation (28) to be written as
|2 - v+ =% [ Tt valar! o (32)
k I

which may be rewritten (refs. 5 and 10) as
T OO _
Yi(z,r) = e~i(re) ¥;(0,7+v;T) + Z/ / e~ Gi(r2) fjk(r+ujz,r’) Yi(z—2z,7") dr’ dz (33)
0 Jr
k
where the exponential is the integrating factor with

t
G t) = /0 o;(r + vjt') dt (34)

In case of j = n (neutron), ¢;(r,t) reduces to on(r)t since vn, = 0.

Rather simple numerical procedures follow from equation (33). Noting that the first-order nature of
equation (28) allows ¥;(z,7) to be taken as a boundary condition for propagation to larger values of z, one
may approximate equation (33) as

h
Yi(z+h,r) = e~6(nh) Yj(z,r+vih) + Z/ /oo e=i(r2) ,—fjk(r+ujz,r') Y(@+h—2z1) dz dr (35)
& 0 Jr

which may be used to develop a numerical stepping procedure. Equation (35) has provided the basis for a
number of new transport codes for baryons of mass number greater than or equal to 1 (ref. 8). These codes
are now being extended to couple with the meson fields and to the negative baryon number fields.



If h is sufficiently small that
o;(r') h< 1 (36)

then, according to perturbation theory (ref. 5),
bplzthz,r') m e E ) o (h2)] (37)

which may be used to approximate the aforementioned integral of equation (35).

For many cases of practical interest (e.g., accelerator studies), monoenergetic particle beams are used, and
thus separation of the singular terms from the solution becomes convenient. The initial beam of type J particles
of energy Ey (where rg = R(Ey)) is taken as

¥j(0,7) = 6;46(ro — 1) (38)
and the solution is written as
Yi(z, ) = Yo, 7) + ¥;(z,7) (39)
The corresponding singular terms are
Yoz, r) = e~k M(rg — 1 — 1pz) 8 (40)

The regular terms of equation (35) for kK = p may be written as
h h 00 _
Yp(z+h,r) = e~%e(nh) Yp(z,r+h) +/ dz e~(12) Z/ foi(r + 2,7") [Wjo(z+h—z,7')
0 = Jrtz
J

+¢i(z+h-z,1")] dr (41)

and the regular terms for kK = n are

h oC
Yn(z+h,r) = e P gy (z,7) + /O dz e (=% / Fnj(r,7") [Wjo(a+h—2, )
i T

+ wj(:c+h—z,r')] dr’ (42)

The singular contribution under the integrals of equations (41) and (42) can be evaluated with equation (40),
and the approximations in equations (36) and (37) can be applied to find

h

ol +hor) = exploop(r) B yp(a,+A) +exp { ~loplr) + op(rD)] 5 | Eoplhurirt) by expl—Gulroa)

+exp {—[ap(»r) 4 an(ro)]%} Fym(h, o) 6; expl-on(ro)a)
+ /TOO exp {' [UP(T) +0op (T, + %)] g} Fpp<h,7”, r'+%) Yp(z, v’ +h) dr’

+ /roo exp {— [ap('r) + o (r'—t— %)} g} Fpn<h,r, r'+g> ¢n(1,r'+%) dr’ (43)

and
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+ h fan(r,rp) €xp {—[Un(r) + on(rp)] } bnj exp[—on(ro) 7]

+ h/Too exp {—[an(r) + ap(r')] %} fnp(r, ™) ¥p (a:,r’Jr %) dr'
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where r{] =19 —T— % and F is related to the cumulative spectrum F as given by

_ h_
Fij(h, ) =/ fij(r—}-z,r’) dz
0

= Fij(r—l—h,'r’) — Fy;(r, ) (45)

with

, e(r) ,
Fyj(r,v) = /0 fi;(E,E) dE (46)

where €(r) is the energy associated with residual range r and E' = ¢(r'). Equations (43) and (44) are evaluated
by establishing an z-grid at which ¢; (€m,7) is evaluated where h is the distance between each successive

evaluation. The integral over 7' is accomplished by esta

using

/T * glrnor) by @) dr' 3" gulruTe) [

blishing an r-grid (and the corresponding E-grid) and

g @m, ) A (47)

T¢

where 7 = (r¢ + 1¢+1)/2, and the series terminates at the highest £ value in the r-grid which is related to the

maximum range (energy) cutoff rmax.

Numerical Algorithms

The error analysis shown earlier has demon-
strated the need for controlling the local truncation
errors so that the application of BRYNTRN can be
extended to a very thick shield. Although the anal-
ysis was limited to the attenuation of the primary
particles (the first term of eq. (10)), the contribution
of error from evaluating the generation of secondaries
is also significant. Restricting our scope presently to
the space application, we focus only on the numeri-
cal algorithms in treating the first, fourth, and fifth
terms of equations (43) and (44). The first term re-
quires interpolation of v, the rest involve both in-
terpolation and numerical integration. Furthermore,
since the number of range (energy) grids is limited
by the computational efficiency, the distribution of
grids should be optimized.

The existing interpolation algorithms in the code
consist of either the second-order Lagrange methods
or a scheme assuming a solar-proton-fluence spec-
trumlike function for ¥ with two parameters deter-
mined by the two neighboring points. These algo-
rithms were adequate for a propagating distance of
approximately 30 g/ cm? (ref. 4). To improve further,
a choice is made from a host of interpolation methods
existing in the literature (refs. 11-13). Among them,
a good candidate is the third-order Lagrange method
with the four neighboring grid points placed evenly
on both sides of the specified (interpolated) point. If
the distribution of grids is rather uniform (on a log-
arithm scale that is suitable for the space radiation
spectrum), the error will tend to be the smallest in
the middle interval of all the data points (ref. 11).
The choice of a much higher order Lagrange method
will substantially decrease the efficiency of the code



since there are more than 10 interpolation calls for
each single-energy point at every step. Other inter-
polation methods such as the cubic spline were con-
sidered but discarded. The splines are, in general,
more accurate. However, their characteristic large
excursions (oscillations) can result in unpredictable
erroneous solutions.

The numerical integration procedures are used
not only for evaluating the secondaries-generation
terms but also for calculating the dose and dose
equivalent. The existing procedure is based on the
compound quadrature formula summing over all the
subintervals between the midpoints of the grids. The
same proton-fluence spectrumlike function as that
described earlier for an existing interpolation pro-
cedure was assumed for each interval. Clearly, this
assumption has the advantage of providing an ana-
lytic expression for the integration over the subin-
tervals, but it has less-accurate interpolated values.
The new integration procedure proposed will retain
the nature of compound quadrature formulation and
make use of the improved interpolation procedures
mentioned earlier. To replace the analytical integra-
tion for the subintervals, a simple numerical method
such as Simpson’s rule is suggested.

In the existing code, the generation of range
grids is based on the uniform logarithm energy spac-

Results and Discussion

ings. This choice was motivated by the fact that the
solar proton fluences are usually several orders of
magnitude larger at the low-energy end of the spec-
trum. Also, the main contribution of the doses
usually comes from the large stopping power at the
low-energy region where the protons are near the
end of their tracks; therefore more numerical pre-
cision is needed for the low-energy region. With the
interpolation procedure replaced by the third-order
Lagrange method, changes must be made to ensure
that the logarithm grids will be uniform in range
rather than in energy. Further modification can be
made to minimize the number of grid points so that
the efficiency of the code can be improved.

Note that the information propagating through
the steps is carried from the interpolated r; + A points
to the r;-grids of the next step. Since h is usually
taken to be about 1 g/cm? and the range grids cover
the scale roughly from 104 to 103 g/cm*, the frac-
tion of grid points below 7y;, + h that are not used as
data points in interpolation and that, consequently,
are not carrying information downstream can be sub-
stantial. Hence, the modification can be made to dis-
tribute fewer points below 1 g/cm?. Note that all the
grid-generation options mentioned here have several
closely spaced points concentrated at the very high
energy end of the logarithm scale.

The existing and new algorithms for interpolation and integration, plus various grid-distribution options, are
tested and compared for several solar-flare proton spectra. These spectra are presented as follows (refs. 14-18):

1. The February 1956 solar particle event (SPE):

¢p(>E) = 1.5 x 109 exp (—E—,Esﬁ) +3 x 108 exp (_E = 100)

2. The November 1960 SPE:

ép(>E) = 7.6 x 10? exp (—E—ﬁl—o) +3.9 x 108 exp (_E - 100)

3. The August 1972 SPE:
$p(>E) = 6.6 x 108 exp (— El0)
4. The August 1972 SPE (King spectrum):
ép(>E) = 7.9 x 10%exp (—Ei-g-s@)
5. A Webber spectrum with 100 MV rigidity:

¢p(>E) = 1.0 x 10% exp [2,3%&9]

6. The August 1989 SPE:
¢p(>E) = 8.65 x 1010 exp [—sg%%)f]

where E is the energy (in units of MeV), P(E) = \/E(E + 1876), and ¢p(>E) is the proton integral fluence

(in units of protons/cm?).
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Since the Lagrange methods are sensitive to the
grid distribution, the truncation errors introduced
by interpolating the spectrum are compared for var-
jous combinations of interpolation procedures and
grid-distribution options. Figures 1-5 show the frac-
tional error of interpolated function ¥(0,7; + h) at
each r;-grid for the above-listed spectra 1-5, respec-
tively. The interpolating distance h is either 0.5
(figs. 1(a)-5(a)) or 1 g/cm? (figs. 1(b)-5(b)). It is
seen that for all the spectra and h values tested, the
combination of existing (uniform logarithm E) grid
and the second-order Lagrange method results in the
largest error. (Note that although it is not shown
here, the interpolation error for the other existing
algorithm assuming a solar-proton-fluence spectrum-
like function was found to be even larger.) Progres-
sively improved accuracy is seen when the second-
order Lagrange method is replaced by the third-order
method and the uniform logarithm E-grid is replaced
by the uniform logarithm r-grid, and subsequently
by the modified logarithm r-grid. As mentioned ear-
lier, the modified grid distribution has fewer grid
points below 1 g/cm* in range. Consequently, it gives
less spacing between the data points that are used
for interpolation, thus resulting in better accuracy.
Table 1 lists the maximum percentage error of in-
terpolation for the existing (old) and new methods
(modified uniform r-grid and third-order Lagrange,
respectively). The overall improvement is at least a
factor of 10 to 20 with all the spectra tested.

A comparison is also made of the new and existing
(old) integration procedures. Fractional differences
in the results between analytical and numerical in-
tegration of ¢ from r; to Tmax are shown in figure 6
for the February 1956 SPE spectrum. Drastic im-
provement is seen for the new algorithm with an ac-
curacy of £0.05 percent or less. This is probably at-
tributed to the improved interpolation method used
in the new integration procedure. The fairly “simple-
minded” numerical integration, such as Simpson’s
rule used for the subintervals, is obviously not a con-
cern here.

To test the numerical convergence in solutions ob-
tained by using the new algorithms for interpolation,
integration, and grid generation, sample dose calcu-
lations are made through a very thick shield. Fig-
ure 7(a) shows various components of free-space ab-
sorbed dose as a function of aluminum thickness up
to 150 g/cm2 for the August 1989 SPE spectrum.
These results are obtained by using the number of
r-grid points N = 30. Similar results obtained with
N = 60 and N = 90 (figs. 7(b) and 7(c), respec-
tively) show practically no difference from those with
N = 30, and therefore convergence is quite evident.

To examine in further detail, the N = 30 and N = 60
results relative to the N = 90 results are compared
for each individual dose component. (See fig. 8.) In
general, it appears that the relative errors increase
as the number of propagating steps increases, as ex-
pected. The maximum relative error for the N =60
results is approximately 1.5 percent excluding the
secondary-neutron high-energy heavy ion (HZE) re-
coil dose where there is an oscillatory behavior in
the converging solution as the number of grids in-
creases. The relative error for N = 30 is approxi-
mately 3.5 percent except for the secondary-proton
jonization dose where the ramping error against the
increasing shield thickness is large and reaches about
10 percent. To reduce such ramping, the number of
grid points below 1 g/cm? was further reduced for
N = 30 by either changing the grid-generation for-
mula or merely increasing the maximum energy cut-
off from 1000 to 4000 MeV. In both cases, the results
show a considerable reduction in maximum error to
less than 5 percent.

The oscillatory behavior in the converging so-
lutions for the secondary-neutron HZE recoil dose
probably came from the rapidly varying cross-section
data (ref. 1) for neutrons at the low energy. This is
also indicated in the less-smooth distribution curve
of 1 for the secondary neutrons at distances farther
from the boundary. (See fig. 9.)

Other results obtained that also show the accu-
racy of the new algorithms are given in tables 2 and 3.
The calculations were intended for predicting the skin
dose received by the aircraft passengers at various
altitudes. For economical reasons, the results with
N = 60 are available only to a thickness of air of
150 g/cm?. The difference between the N = 30 and
N = 60 results is almost negligible.

Another convergence issue that needs to be ad-
dressed is the perturbation series for the nucleon
transport method used here. The perturbation the-
ory requires that oh < 1. Since o = 0.01 cm?/g, we
usually take h =1 g/cm?. Although the numerical
error has been reduced considerably to about 5 per-
cent for the large shield thickness, the error from the
perturbation series should also be brought in line.
By varying the value of h down to 0.1 g/cmz, it
is demonstrated that the solution converges rather
quickly as shown in figure 10. Without sacrificing
much computing time, a step size of 0.5 g/cm2 ap-
pears to be a reasonable choice for an error of approx-
imately 10 percent for the secondaries. The overall
computing time is found to be about the same as
it was when using the old algorithms for the same
number of grid points. Note that the test for conver-
gence (conducted by the third author) using the old

9



algorithm indicates (see fig. 11) an order-of-magnitude
difference in the secondary-neutron results for large

shield thickness for the same case as that computed

for figure 7. As mentioned earlier, the old algorithms

were adequate for a thickness up to about 30 g/cm?

as shown in figure 11, but they should be replaced

with the new algorithms described herein.

Concluding Remarks

The use of the baryon transport computer code
(BRYNTRN) in space radiation dose analyses for
very large shield thicknesses is improved by modi-
fying the numerical algorithms. These include inter-
polation, numerical integration, and grid-generation
procedures. An accuracy of approximately 5 percent
for a shield thickness of 150 g/cm? was found when
a minimal 30-point energy grid was used. Future ef-
forts should be placed on improving the nuclear data
base and adding meson contributions.

NASA Langley Research Center
Hampton, VA 23665-5225
March 20, 1991
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Table 1. Maximum Error of Interpolation for Existing and New Methods

Maximum error of interpolation, percent, for—
Step size = 0.5 g/cm? Step size = 1 g/cm?
Old New Old New
Spectrum algorithms algorithms algorithms algorithms

1 —2.09 0.08 -3.39 0.14
2 -3.90 19 4.05 .32
3 1.16 .05 1.90 .08
4 1.32 .06 2.16 .09
5 40 .04 .66 .06

Table 2. Dose in Skin Tissue Behind Various Thicknesses of Air for the February 1956
SPE Spectrum

N denotes the number of grid points used in calculation;
HZE denotes high-energy heavy ion

Thickness, Dose with N = 30, Dose with N = 60, Difference,
g/cm? Gy Gy percent
Primary-proton ionization

2 2.081 2.975 0.19
20 1.220 x 107! 1.219 x 107! 11
50 5.767 x 10~2 5.763 x 1072 07

100 3.017 x 102 3.014 x 1072 .10
150 1.731 x 1072 1.727 x 1072 .23
' Secondary-proton ionization

2 3.707 x 102 3.694 x 102 0.35
20 2.011 x 10~2 1.994 x 1072 .82
50 2.345 x 1072 2.325 x 102 84

100 2.144 x 1072 2.119 x 1072 1.17
150 1.717 x 102 1.692 x 1072 1.48
Secondary-neutron HZE recoil

2 8.766 x 1079 8.762 x 107 0.05
20 1.839 x 10~4 1.848 x 1074 46
50 2.805 x 1074 2.843 x 1074 1.35

100 3.137 x 1074 3.209 x 104 2.30
150 2.837 x 10~* 2.918 x 10~* 2.85
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Table 3. Dose Equivalent in Skin Tissue Behind Various Thicknesses of Air for the
February 1956 SPE Spectrum

N denotes the number of grid points used in calculation;

HZE denotes high-energy heavy ion

Thickness, Dose equivalent Dose equivalent Difference,
g/cm2 with N = 30, Sv with N = 60, Sv percent
Primary-proton ionization

2 4.925 4.927 0.05
20 1.418 x 1071 1.418 x 107! .04
50 6.205 x 10~2 6.201 x 10~2 .06

100 3.199 x 102 3.196 x 102 .10
150 1.826 x 1072 1.823 x 1072 .16
Secondary-proton ionization

2 9.118 x 1072 9.110 x 1072 0.09
20 2.917 x 102 2.895 x 1072 75
50 3.105 x 102 3.080 x 102 .80

100 2.726 x 102 2.696 x 102 1.11
150 2.146 x 1072 2.116 x 1072 1.14
Secondary-neutron HZE recoil

2 1.753 x 1073 1.752 x 1073 0.04
20 3.678 x 1073 ©3.696 x 1073 A7
50 5.610 x 1073 5.686 x 1073 1.33

100 6.275 x 103 6.419 x 1073 2.25
150 5.675 x 1073 5.836 x 1073 2.77
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(a) h=0.5 g/cm?.

Figure 1. Fractional error of interpolating the February 1956 SPE spectrum for various grid distributions and
interpolation methods.
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.. Interpolation method
Range (energy) grid (Lral\)grange order)

> Uniform log E Second
04 — O UniformlogE Third
Vv  Uniform log r Third
¥ Modified log r Third
(new grid)
X
.02 —
0]
v X
Fractional X é X K ‘ ¢ | 8 ﬁ
cional L ety § Dovy d
vo ©
v
0]
-02 |-
X
X
04 | | | 1 | | L]
10 104 103 102 1071 100 10l 102 103
Range, g/cm2

(a) h=0.5 g/cm?.

Figure 2. Fractional error of interpolating the November 1960 SPE spectrum for various grid distributions and
interpolation methods.
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Figure 3. Fractional error of interpolating the August 1972 SPE spectrum for various grid distributions and
interpolation methods.
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Figure 4. Fractional error of interpolating the August 1972 SPE (King) spectrum for various grid distributions
and interpolation methods.
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Figure 5. Fractional error of interpolating the Webber spectrum (100 MV rigidity) for various grid distributions
and interpolation methods.
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Figure 6. Fractional error of integrating the February 1956 SPE spectrum using existing and new algorithms.
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Figure 7. Free-space absorbed doses to the August 1989 SPE spectrum as a function of aluminum thickness.
New algorithms.
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